Promedio Móvil Ponderado Exponencialmente


El Promedio Móvil Ponderado Exponencialmente (EWMA) es una estadística para monitorear el proceso que promedia los datos de una manera que da menos y menos peso a los datos a medida que son eliminados en el tiempo. Comparación del diagrama de control de Shewhart y las técnicas del diagrama de control de EWMA Para la técnica de control de gráficos de Shewhart, la decisión sobre el estado de control del proceso en cualquier momento (t) depende únicamente de la medición más reciente del proceso y, El grado de veracidad de las estimaciones de los límites de control a partir de datos históricos. Para la técnica de control EWMA, la decisión depende de la estadística EWMA, que es un promedio exponencialmente ponderado de todos los datos anteriores, incluyendo la medición más reciente. Mediante la elección del factor de ponderación (lambda), el procedimiento de control EWMA puede hacerse sensible a una deriva pequeña o gradual en el proceso, mientras que el procedimiento de control Shewhart sólo puede reaccionar cuando el último punto de datos está fuera de un límite de control. Definición de EWMA La estadística que se calcula es: mbox t lambda Yt (1-lambda) mbox ,,, mbox ,,, t 1,, 2,, ldots ,, n. Donde (mbox 0) es la media de los datos históricos (objetivo) (Yt) es la observación en el tiempo (t) (n) es el número de observaciones a monitorear incluyendo (mbox 0) (0 Interpretación del gráfico de control EWMA El rojo Puntos son los datos en bruto la línea irregular es la estadística EWMA con el tiempo. El gráfico nos dice que el proceso está en control porque todos (mbox t) se encuentran entre los límites de control. No obstante, parece que hay una tendencia hacia arriba durante los últimos 5 EMA Los EMA de 12 y 26 días son los promedios a corto plazo más populares, y se utilizan para crear indicadores como la divergencia de convergencia en el promedio móvil (MACD ) Y el oscilador de precio porcentual (PPO).En general, los EMA de 50 y 200 días se utilizan como señales de tendencias a largo plazo. Los comerciantes que emplean el análisis técnico encontrar las medias móviles muy útil y perspicaz cuando se aplica correctamente, Utilizados incorrectamente o mal interpretados Todas las medias móviles utilizadas comúnmente en el análisis técnico son, por su propia naturaleza, indicadores rezagados. En consecuencia, las conclusiones derivadas de la aplicación de una media móvil a un gráfico de mercado en particular deben ser para confirmar un movimiento del mercado o para indicar su fortaleza. Muy a menudo, en el momento en que una línea de indicador de media móvil ha hecho un cambio para reflejar un movimiento significativo en el mercado, el punto óptimo de entrada al mercado ya ha pasado. Un EMA sirve para aliviar este dilema en cierta medida. Debido a que el cálculo EMA pone más peso en los datos más recientes, abraza la acción del precio un poco más estricta y por lo tanto reacciona más rápido. Esto es deseable cuando se usa un EMA para derivar una señal de entrada de negociación. Interpretación de la EMA Al igual que todos los indicadores de media móvil, son mucho más adecuados para los mercados de tendencias. Cuando el mercado está en una fuerte y sostenida tendencia alcista. La línea de indicadores EMA también mostrará una tendencia alcista y viceversa para una tendencia descendente. Un comerciante vigilante no sólo prestará atención a la dirección de la línea EMA, sino también la relación de la tasa de cambio de una barra a la siguiente. Por ejemplo, a medida que la acción del precio de una fuerte tendencia alcista comienza a aplastarse y retroceder, la tasa de cambio de una barra a la siguiente empezará a disminuir hasta que la línea del indicador se aplaste y la tasa de cambio sea cero. Debido al efecto de retraso, en este punto, o incluso algunas barras antes, la acción del precio debería ya haber invertido. Por lo tanto, se sigue que la observación de una disminución consistente en la tasa de cambio de la EMA podría utilizarse como un indicador que podría contrarrestar el dilema causado por el efecto retardado de las medias móviles. Usos comunes de la EMA Los EMAs se usan comúnmente junto con otros indicadores para confirmar movimientos significativos del mercado y para calibrar su validez. Para los comerciantes que comercian los mercados intradía y de rápido movimiento, la EMA es más aplicable. Muy a menudo los comerciantes utilizan EMAs para determinar un sesgo de negociación. Por ejemplo, si un EMA en un gráfico diario muestra una fuerte tendencia al alza, una estrategia de comerciantes intradía puede ser el comercio sólo desde el lado largo en un gráfico intraday. Exploring El exponencialmente ponderado Volatilidad media móvil es la medida más común de riesgo, Viene en varios sabores. En un artículo anterior, mostramos cómo calcular la volatilidad histórica simple. Utilizamos la volatilidad para medir el riesgo futuro. Utilizamos los datos reales de los precios de las acciones de Google para calcular la volatilidad diaria basada en 30 días de datos de existencias. En este artículo, mejoraremos la volatilidad simple y discutiremos el promedio móvil exponencialmente ponderado (EWMA). Vs histórico. Volatilidad implícita En primer lugar, permite poner esta métrica en un poco de perspectiva. Existen dos enfoques generales: volatilidad histórica e implícita (o implícita). El enfoque histórico supone que el pasado es un prólogo que medimos la historia con la esperanza de que sea predictivo. La volatilidad implícita, por el contrario, ignora la historia que resuelve por la volatilidad implícita en los precios de mercado. Espera que el mercado conozca mejor y que el precio de mercado contenga, aunque implícitamente, una estimación consensual de la volatilidad. Si nos centramos sólo en los tres enfoques históricos (a la izquierda de arriba), tienen dos pasos en común: Calcular la serie de retornos periódicos Aplicar un esquema de ponderación En primer lugar, Calcular el retorno periódico. Ésa es típicamente una serie de vueltas diarias donde cada vuelta se expresa en términos continuamente compuestos. Para cada día, tomamos el registro natural de la relación de precios de las acciones (es decir, el precio hoy dividido por el precio ayer, y así sucesivamente). Esto produce una serie de retornos diarios, de u i a u i-m. Dependiendo de cuántos días (m días) estamos midiendo. Eso nos lleva al segundo paso: aquí es donde los tres enfoques difieren. En el artículo anterior (Usando Volatilidad Para Calcular el Riesgo Futuro), mostramos que bajo un par de simplificaciones aceptables, la varianza simple es el promedio de los retornos cuadrados: Obsérvese que esto suma cada uno de los retornos periódicos, luego divide ese total por el Número de días u observaciones (m). Por lo tanto, su realmente sólo un promedio de los retornos cuadrados periódico. Dicho de otra manera, cada cuadrado de retorno se da un peso igual. Por lo tanto, si alfa (a) es un factor de ponderación (específicamente, 1 / m), entonces una variante simple se parece a esto: El EWMA mejora en la varianza simple La debilidad de este enfoque es que todas las ganancias ganan el mismo peso. El retorno de ayer (muy reciente) no tiene más influencia sobre la varianza que el retorno de los últimos meses. Este problema se fija mediante la media móvil ponderada exponencialmente (EWMA), en la cual los rendimientos más recientes tienen mayor peso sobre la varianza. La media móvil exponencialmente ponderada (EWMA) introduce lambda. Que se denomina parámetro de suavizado. Lambda debe ser menos de uno. Bajo esta condición, en lugar de iguales ponderaciones, cada cuadrado de retorno es ponderado por un multiplicador de la siguiente manera: Por ejemplo, RiskMetrics TM, una empresa de gestión de riesgos financieros, tiende a utilizar un lambda de 0,94 o 94. En este caso, el primero Más reciente) cuadrado es ponderado por (1-0.94) (. 94) 0 6. El próximo cuadrado de retorno es simplemente un lambda-múltiplo del peso anterior en este caso 6 multiplicado por 94 5.64. Y el tercer día anterior el peso es igual (1-0.94) (0.94) 2 5.30. Ese es el significado de exponencial en EWMA: cada peso es un multiplicador constante (es decir, lambda, que debe ser menor que uno) del peso de los días anteriores. Esto asegura una varianza que está ponderada o sesgada hacia datos más recientes. (Para obtener más información, consulte la hoja de cálculo de Excel para la volatilidad de Google.) A continuación se muestra la diferencia entre la volatilidad y EWMA para Google. La volatilidad simple pesa efectivamente cada vuelta periódica en 0.196 como se muestra en la columna O (teníamos dos años de datos de precios de acciones diarios, es decir, 509 devoluciones diarias y 1/509 0.196). Pero note que la Columna P asigna un peso de 6, luego 5.64, luego 5.3 y así sucesivamente. Esa es la única diferencia entre la varianza simple y EWMA. Recuerde: Después de sumar la serie completa (en la columna Q) tenemos la varianza, que es el cuadrado de la desviación estándar. Si queremos volatilidad, necesitamos recordar tomar la raíz cuadrada de esa varianza. ¿Cuál es la diferencia en la volatilidad diaria entre la varianza y EWMA en el caso de Googles? Su significativo: La variación simple nos dio una volatilidad diaria de 2,4 pero la EWMA dio una volatilidad diaria de sólo 1,4 (ver la hoja de cálculo para más detalles). Aparentemente, la volatilidad de Googles se estableció más recientemente, por lo tanto, una simple varianza podría ser artificialmente alta. La variación de hoy es una función de la variación de los días de Pior Usted notará que necesitábamos calcular una larga serie de pesos exponencialmente decrecientes. No haremos la matemática aquí, pero una de las mejores características de la EWMA es que toda la serie se reduce convenientemente a una fórmula recursiva: Recursiva significa que las referencias de la varianza de hoy (es decir, es una función de la variación de días anteriores). Esta fórmula también se encuentra en la hoja de cálculo, y produce exactamente el mismo resultado que el cálculo de longitud larga. Se dice: La varianza de hoy (bajo EWMA) equivale a la varianza de ayer (ponderada por lambda) más la vuelta al cuadrado de ayer (pesada por uno menos lambda). Observe cómo estamos agregando dos términos juntos: la variación ponderada de ayer y la ponderada ponderada de ayer, la vuelta al cuadrado. Aun así, lambda es nuestro parámetro de suavizado. Un lambda más alto (por ejemplo, como RiskMetrics 94) indica una disminución más lenta en la serie - en términos relativos, vamos a tener más puntos de datos en la serie y van a caer más lentamente. Por otro lado, si reducimos el lambda, indicamos una mayor decaimiento: los pesos se caen más rápidamente y, como resultado directo de la rápida decaimiento, se utilizan menos puntos de datos. (En la hoja de cálculo, lambda es una entrada, para que pueda experimentar con su sensibilidad). Resumen La volatilidad es la desviación estándar instantánea de un stock y la métrica de riesgo más común. Es también la raíz cuadrada de la varianza. Podemos medir la varianza históricamente o implícitamente (volatilidad implícita). Al medir históricamente, el método más fácil es la varianza simple. Pero la debilidad con la varianza simple es que todas las ganancias obtienen el mismo peso. Así que enfrentamos un trade-off clásico: siempre queremos más datos, pero cuanto más datos tengamos, más nuestro cálculo se diluye por datos distantes (menos relevantes). La media móvil exponencialmente ponderada (EWMA) mejora la varianza simple asignando pesos a los retornos periódicos. Haciendo esto, ambos podemos usar un tamaño grande de la muestra pero también dar mayor peso a vueltas más recientes. (Para ver un tutorial de película sobre este tema, visite la Tortuga Biónica.)

Comments